§2 Computation of Mixed Nash Equilibria
Throughout this chapter: Only finite 2-player games $G=([2],S,u)$
Notation: $S_1 = M \coloneqq \set{1,\dots,m}$, $S_2 = N = \set{m+1,\dots,m+n}$, $A,B \in \IR^{M\times N}$ utility matrices of player 1/2
§2.1 Full Support Enumeration
Obs. 1.8: $x^* \in \Delta$ is MNE $\iff x^* \in B(x^*) \coloneqq \prod_i B_i(x^*_{-i})$ where $B_i(x^*_{-i}) \coloneqq \set{x_i \in \Delta(S_i) \sMid x_i \text{ best resp. to } x^*_{-i}}$
Thm. 2.2 (Best-Response-Condition (BRC)): $(x,y) \in \Delta$ mixed strategy profile. Then:
$x$ best response to $y$ $\iff \bigl(\forall i \in M: x_i \gt 0 \implies (Ay)_i = \max\set{(Ay)_k \sMid k \in M} \class{tempstep a}{\data{tempstep-from=11}{\eqqcolon u}}\bigr)$
$y$ best response to $x$ $\iff \bigl(\forall j \in N: y_j \gt 0 \implies (x\!\transp\! B)_j = \max\set{(x\!\transp\! B)_\ell \sMid \ell \in N} \class{tempstep a}{\data{tempstep-from=11}{\eqqcolon v}}\bigr)$
Thm. 2.2 (Best-Response-Condition (BRC)): $(x,y) \in \Delta$ mixed strategy profile. Then:
$x$ best response to $y$ $\iff \!\bigl(\forall i \in M: x_i \gt 0 \implies (Ay)_i = \max\set{(Ay)_k \sMid k \in M} \eqqcolon u\bigr)\!$
$y$ best response to $x$ $\iff \!\bigl(\forall j \in N: y_j \gt 0 \implies (x\!\transp\! B)_j = \max\set{(x\!\transp\! B)_\ell \sMid \ell \in N} \eqqcolon v\bigr)\!$
Best-Response-Polyhedra :
\begin{align*}
\bar{P_1} &\coloneqq \set{(x,v) \in \IR^M \times \IR \sMid \forall j \in N: (x\transp B)_j \leq v, \sum\nolimits_{i \in M}x_i = 1, \forall i \in M: x_i \geq 0} \\
\data{tempstep-classes=7-30:red}{\class{tempstep}{\bar{P_2}}} &\data{tempstep-classes=7-30:red}{\class{tempstep}{\,\coloneqq \set{(y,u) \in \IR^N \times \IR \sMid \forall i \in M: (A y)_i \leq u, \,\,\,\;\sum\nolimits_{j \in N}y_j = 1, \forall y \in N: y_j \geq 0}}}
\end{align*}
$(x,v) \in \bar{P_1}$ has label $k \in M \cup N$ $:\iff k \in N \land (x\transp B)_k = v \,\,\,\;\lor\quad k \in M \land x_k = 0$
$(y,u) \in \bar{P_2}$ has label $k \in M \cup N$ $:\iff k \in M \land (A y)_k = u \quad\lor\quad k \in N \land y_k = 0$
Thm. 2.7: $(x,y) \in \Delta$ is MNE with utilities $u,v \in \IR \iff (x,v) \in \bar{P_1}, (y,u) \in \bar{P_2}$ have all labels.
Asmpt. 2.8: $A,B\transp$ non-negative and without zero columns
\begin{align*}
P_1 &\coloneqq \set{x \in \IR^M \sMid \forall j \in N: (x\transp B)_j \leq 1, \phantom{\sum\nolimits_{i \in M}x_i = 1,} \forall i \in M: x_i \geq 0} \\
P_2 &\coloneqq \set{y \in \IR^N \sMid \forall i \in M: (A y)_i \leq 1, \,\,\,\;\phantom{\sum\nolimits_{j \in N}y_j = 1,} \forall y \in N: y_j \geq 0}
\end{align*}
Lem. 2.9: $\bar{P_1} \to P_1 \setminus \{0\}, (x,v) \mapsto \tfrac{1}{v}x$, $\bar{P_2} \to P_2 \setminus \{0\}, (y,u) \mapsto \tfrac{1}{u}y$ label-invariant bij's.
Thm. 2.7': $\displaystyle\Bigl(\frac{x}{\sum_i x},\frac{y}{\sum_j y_j}\Bigr) \in \Delta$ is MNE $\iff x \in P_1 \setminus \{0\}, y \in P_2 \setminus \{0\}$ have all labels.
Example 2.3:
$4$ $5$
$1$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{3}},3)$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{3}},2)$
$2$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{2}},2)$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{5}},6)$
$3$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{0}},3)$ $(\data{tempstep-classes=7-8:red}{\class{tempstep}{6}},1)$
\Huge y_4
\Huge u
\Huge 1
\Huge y_5
\Huge1
\Huge1
\Huge\Delta(S_2)
\Huge\bar{P_2}
\Huge\color{var(--x1color)}3
\Huge\color{var(--x1color)}3
\Huge\color{var(--x2color)}2
\Huge\color{var(--x2color)}5
\Huge\color{var(--x3color)}0
\Huge\color{var(--x3color)}6
\Huge P_2
\begin{align*}
\phantom{0y_0 + \,}\data{tempstep-classes=24:x1hl}{\class{tempstep}{\data{tempstep-classes=8:red}{\class{tempstep}{3}}y_4 + \data{tempstep-classes=8:red}{\class{tempstep}{3}}y_5}} &\data{tempstep-classes=24:x1hl}{\class{tempstep}{\,\leq u}} \\
\data{tempstep-classes=25:x2hl}{\class{tempstep}{\data{tempstep-classes=8:red}{\class{tempstep}{2}}y_4 + \data{tempstep-classes=8:red}{\class{tempstep}{5}}y_5}} &\data{tempstep-classes=25:x2hl}{\class{tempstep}{\,\leq u}} \\
\data{tempstep-classes=26:x3hl}{\class{tempstep}{\data{tempstep-classes=8:red}{\class{tempstep}{0}}y_4 + \data{tempstep-classes=8:red}{\class{tempstep}{6}}y_5}} &\data{tempstep-classes=26:x3hl}{\class{tempstep}{\,\leq u}} \\
\phantom{0}y_4 + \phantom{0}y_5 &= 1 \\
y_4, \;\quad y_5 &\geq 0
\end{align*}
\begin{align*}
\phantom{0y_0 + \,}3y_4 + 3y_5 &\leq \data{tempstep-classes=43:red}{\class{tempstep}{1}} \\
2y_4 + 5y_5 &\leq \data{tempstep-classes=43:red}{\class{tempstep}{1}} \\
0y_4 + 6y_5 &\leq \data{tempstep-classes=43:red}{\class{tempstep}{1}} \\
\phantom{.} &\phantom{.} \\
y_4, \;\quad y_5 &\geq 0
\end{align*}
Asmpt. 2.11: $P_1, P_2$ are simple (exactly $m$ or $n$, resp., tight inequalities at each vertex)
Fact 2.13: For simple polytop $P \subseteq \IR^n$ and $\beta: P \to [n], x \mapsto \set{ i \in [n] \sMid i\text{-th inequality tight}}$:
$\forall v,v' \in P \text{ vertices}: v \neq v' \implies \beta(v) \neq \beta(v')$
$\forall v \in P \text{ vertex}, \forall k \in \beta(v): \exists! v' \in P \text{ neighbour of } v: \beta(v') \cap \beta(v) = \beta(v) \setminus \{k\}$
Alg. 2.2: Lemke-Howson
Input: Finite 2-player game $G$ satisfying Assumptions 2.8 and 2.11
Output: A MNE $(x,y)$ of $G$
$x \leftarrow 0, y \leftarrow 0$ and $k \setminus k_0$ for some start label $k_0 \in M$
Repeat:
mm remove label $k$ from $x$; obtain new label $k'$
mm If $k' = k_0$ Then Return $(\mathrm{nrml}(x),\mathrm{nrml}(y))$
mm remove label $k'$ from $y$; obtain new label $k''$
mm If $k'' = k_0$ Then Return $(\mathrm{nrml}(x),\mathrm{nrml}(y))$
mm set $k \leftarrow k''$
\begin{align*}
\data{tempstep-classes=4-100:y4hl}{\class{tempstep}{3x_1 + 2x_2 + 3x_3}} &\data{tempstep-classes=4-100:y4hl}{\class{tempstep}{\,\leq 1}} \\
\data{tempstep-classes=4-100:y5hl}{\class{tempstep}{2x_1 + 6x_2 + 1x_3}} &\data{tempstep-classes=4-100:y5hl}{\class{tempstep}{\,\leq 1}} \\
& \\
\data{tempstep-classes=5-100:x1hl}{\class{tempstep}{x_1}}, \;\quad \data{tempstep-classes=5-100:x2hl}{\class{tempstep}{x_2}}, \;\quad \data{tempstep-classes=5-100:x3hl}{\class{tempstep}{x_3}} & \geq 0
\end{align*}
\begin{align*}
\data{tempstep-classes=3-100:x1hl}{\class{tempstep}{\phantom{0y_0 + \,}3y_4 + 3y_5}} &\data{tempstep-classes=3-100:x1hl}{\class{tempstep}{\,\leq 1}} \\
\data{tempstep-classes=3-100:x2hl}{\class{tempstep}{2y_4 + 5y_5}} &\data{tempstep-classes=3-100:x2hl}{\class{tempstep}{\,\leq 1}} \\
\data{tempstep-classes=3-100:x3hl}{\class{tempstep}{0y_4 + 6y_5}} &\data{tempstep-classes=3-100:x3hl}{\class{tempstep}{\,\leq 1}} \\
\data{tempstep-classes=5-100:y4hl}{\class{tempstep}{y_4}}, \;\quad \data{tempstep-classes=5-100:y5hl}{\class{tempstep}{y_5}} &\geq 0
\end{align*}
\Huge \data{tempstep-classes=5-100:y4hl}{\class{tempstep}{y_4}}
\Huge \data{tempstep-classes=5-100:y4hl}{\class{tempstep}{y_5}}
\Huge P_2
\Huge\color{var(--x1color)} \frac{1}{3}
\Huge\color{var(--x1color)} \frac{1}{3}
\Huge\color{var(--x2color)} \frac{1}{5}
\Huge\color{var(--x2color)} \frac{1}{2}
\Huge\color{var(--x3color)} \frac{1}{6}
\Huge \data{tempstep-classes=5-100:x3hl}{\class{tempstep}{x_3}}
\Huge \data{tempstep-classes=5-100:x2hl}{\class{tempstep}{x_2}}
\Huge \data{tempstep-classes=5-100:x1hl}{\class{tempstep}{x_1}}
\Huge\color{var(--y4color)} \frac{1}{3}
\Huge\color{var(--y4color)} \frac{1}{3}
\Huge\color{var(--y5color)} \frac{1}{6}